

OVERVIEW

The Time Series Lab (TSL) is a renewable modeling tool that produces future synthetic scenarios of intermittent Variable Renewable Energy (VRE) sources. TSL has two main modules: The **TSL-Data** and The **TSL-Scenarios**:

TSL - DATA

Creates a "synthetic" hourly historical record by processing the information available at the MERRA-2 global reanalysis database.

TSL - SCENARIOS

Generates future VRE scenarios that are temporally and spatially correlated with hydro inflows.

To estimate the statistical model, **TSL-Scenarios** needs historical data of VRE generation, which may be a very challenging task to obtain for some hotspots. Related to that, TSL has two main functionalities:

Real historical data can be introduced by the user A "synthetic" hourly historical based on reanalysis data of wind speed and solar irradiation can be created by TSL-Data

CREATING A HISTORICAL RENEWABLE RECORD

The TSL calculates the wind production through a model based on the Virtual Wind Farm (VWF) methodology. The following parameters are used to convert wind speed into energy:

25 m/s

20

15

10

DOWNLOAD WIND SPEED DATA

EXTRAPOLATE WIND SPEED TO

CALCULATES THE POWER OUTPUT USING THE TURBINE POWER CURVE

speed data)

The solar production is based on the data of Global Horizontal Irradiation, i.e., the irradiation at the top of the atmosphere extracted from the reanalysis database. Taking this information into account, the GSEE (Global Solar Energy Estimator) method is applied. The following parameters are used:

The coordinate of the solar plant

DOWNLOAD SOLAR IRRADIATION DATA

ESTIMATE POWER OUTPUT CONSIDERING EFFICIENCY AND TRACKING SYSTEM

DC -> AC CONVERSION

FINDING HOTSPOT FOR GENERIC PROJECTS

Besides providing a framework to create a "synthetic" historical data of renewable generation, the TSL provides a tool to find "hotspots" for generic wind and solar plant projects. For this task, the following tools are available:

- Wind speed map for the whole world
- Solar irradiation map for the whole world
- Protected areas for the whole world
- Possibility to upload custom user-defined maps of wind speed and solar irradiation

File Dat	a Scenarios							A 🖓 Langur	.age 🔭 🛞 He
Save Discar	d Execution	Database onfiguration	Turbines Prof	les Zoom	Export Import to excel from Excel	Select Generate stations historical records	Inflows Windows	s	
	Options		Complementary	data Map options	Get & transform data	Wind & Solar	Hydros Layout		
Renewable p	lants					# ×	Map		
Drag a column h	eader and drop it he	e to group by !	that column					COLOMBIA	
Code	Name T	System	▼ Station ▼	Technology Type	Installed capacity	T Latitude	+	Minu 5 Ward 1 America 1	
> 5599	BM_SE_99	SUDESTE	BM_SE_CO_1	Biomass	12500		- wito	The Contraction of Manager	
1653	BIOSE_A-6_18	SUDESTE	BM_SE_CO_1	Biomass	28.48		ECUADOR		
1650	BIOSE_A-4_19	SUDESTE	BM_SE_CO_1	Biomass	13			Sijitarém.	
1655	SOLSE_A-4_19	SUDESTE	SOL_MG	Solar	40	-17.4358207488	S ST	Annuise	
4001	SOL_SP_1	SUDESTE	SOL_SP_1	Solar	20000	-21.96342493684	ends	Lesición (Contra-	
4002	SOL_SP_2	SUDESTE	SOL_SP_2	Solar	20000	-20.8588117908(1 dias	Marabet The American	
4003	SOL_SP_3	SUDESTE	SOL_SP_3	Solar	20000	-22.2687640390			
4004	SOL_MG_1	SUDESTE	SOL_MG_1	Solar	20000	-15.47485740268	Trujillo		
4005	SOL_MG_2	SUDESTE	SOL_MG_2	Solar	20000	-17.56024650325	132		
4006	SOL_MG_3	SUDESTE	SOL_MG_3	Solar	20000	-19.60119416126		BRAZIL	
4007	SOL_RJ_1	SUDESTE	SOL_RJ_1	Solar	20000	-22.8723793067{	<u></u>	Ribergita University of the second	
4008	SOL_ES_1	SUDESTE	SOL_ES_1	Solar	20000	-19.37334071336	LIMA		
5015	SOL_MS_1	SUDESTE	SOL_MS_1	Solar	20000	-19.8700598379; 🚽	à.		
4						•			
Additional p	ant configuratio	n				**************************************			
Turbine para	meters			Solar paramet	ers			BOLIVAA	
								Iquique & Campo Crando	
								RIGO STANE RO	
								Antofagata PARASUAN São (2010) Wind 1	Speed (m/s
									-2.5
							-	Astronomic Contraction 22:	5-3.6 6-5.3
							-	5.3	3-6.6
								Peter 1	6-7.8 8-8.8
									8-9.7
								9.7	7+
								Lat -20.1797	Lng: -76.201
								Cettle Cordoba	etMap contribu
									_

GENERATING SYNTHETIC RENEWABLE GENERATION SCENARIOS CORRELATED WITH HYDRO INFLOWS

Due to the spatial correlation of wind and solar generation in different regions, as well as the spatial and temporal correlations between hydro inflows and wind speed in some regions, TSL represents the joint probability distribution of all intermittent renewable and hydro resources for both existing and future plants.

The Bayesian Network methodology is a statistical model that can produce synthetic scenarios, capturing the most significant correlations existing in the historical data:

- Produce scenarios considering a joint probability distribution
- The probability distribution of each plant is numerically estimated through a non-parametric method
- Maintain temporal and spatial correlations in the synthetic scenarios being produced
- Maintain the original probability distribution of the historical record

In summary, because of the high variability and intermittency of this kind of resource, the TSL generates those scenarios with the following features:

Hourly resolution
Non-parametric estimation of the probability distributions
Bayesian network methodology to capture the temporal and spatial correlations between VRE and hydro inflows

USES OF TIME SERIES LAB

The TIME SERIES LAB (TSL) model has been used in studies for renewable integration analysis, valuation of renewable projects and investment in new renewable projects. It is also being used in many studies involving production costing simulations and expansion planning tasks in several countries, such as Brazil, Colombia, Costa Rica, Ecuador, Mexico and others.

